
 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

 

 
 

INVESTIGATING ENVIRONMENTAL DATA WITH MICRO:BITS 

According to the research of Professor Stephen Heppell:  
‘A poor physical environment hurts learning.’  
Source: www.learnometer.net 

To be more specific, poor light levels, the wrong temperatures, 
inappropriate sound volumes and rhythms, humidity, air 
pollution, carbon dioxide (CO2) and air pressure can all impair 
learning. On their own, each of these factors can affect a 
student’s ability to learn. In combination, current research is 
expected to show that learning outcomes are even worse. 

So, what can you do about it? This knowledge provides a  
great opportunity for students to participate in some 
authentic transdisciplinary activities focused on Technologies, 
Science and Mathematics to measure environmental factors 
and improve the spaces in which they learn. ‘If we can optimise 
that environment students learn more effectively and it also 
encourages them to become reflective learners, which 
improves their learning further.’ 
Source: www.learnometer.net 

Some of these activities could be done using mobile phone 
apps and devices such as the Learnometer (Figures 1 and 2). 
Alternatively, your students could measure some of these 
things for themselves by creating digital solutions (such as a 
micro:bit with MonkMakes Sensor Board as shown in Figure 3 
– a powerful, authentic learning project. See tutorial page 2. 

The Learnometer 
Partners of Stephen Heppell have produced the ‘Learnometer’ 
– a device which sits happily in your classroom and measures 
all the physical factors listed earlier. Both versions of the device 
(Figures 1 and 2) display readouts of the physical environment 
and can store data in the cloud for later use. For more 
information about these devices see 
https://gratnellslearnometer.com 

 
 Figure 1: Early model 
 Learnometer 

 
 Figure 2: Learnometer 

 
Figure 3: A micro:bit with  
MonkMakes Sensor Board 

 

CLASSROOM IDEAS: YEARS 5–8 

http://www.learnometer.net/
http://www.learnometer.net/
https://gratnellslearnometer.com/


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

TUTORIAL  
This tutorial shows the coding needed for digital solutions to some of the many 
environmental issues mentioned in the introduction. They can be created using 
pseudocode/English, visual programming and general-purpose programming. 

It is organised into parts as follows: 

Part A: Measuring light level – Years 5–6, Years 7–8 
Part B: Measuring temperature – Years 5–6, Years 7–8 
Part C: Measuring sound level – Years 5–6 or 7–8 
Part D: Extension activities (optional) 

Context: environmental factors affecting learning  

Challenge: Create a digital device that can measure and display one or more of the 
following environmental factors in the classroom:  

• light levels 
• temperature 
• sound levels. 
Optional (requires extra sensors) 
• CO2 levels  
• air pressure 

Materials list (Figure 4):  

1 x micro:bit  

1 x micro:bit power supply  

1 x micro:bit USB connector (not shown) 

1 x MonkMakes Sensor Board 

10 x alligator leads 

 
 

 
Figure 4: L–R: micro:bit, buzzer, alligator clips, MonkMakes 
Sensor Board, speaker 

1 x buzzer or speaker for micro:bit 

https://makecode.microbit.org website or Mu editor for MicroPython Download site: 

https://codewith.mu/en/download 

 

Suggested introductory activity 
Use the ACARA computational thinking poster as a stimulus to identify the aspects of 
computational thinking involved in this activity. See 
https://www.australiancurriculum.edu.au/media/5013/computational-thinking_poster_v3.pdf 

  

2 

https://makecode.microbit.org/
https://codewith.mu/en/download
https://www.australiancurriculum.edu.au/media/5013/computational-thinking_poster_v3.pdf


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

 

Part A: Measuring light level  

Intended cohort: Years 5–6 

Context: Poor lighting is a significant barrier to learning. Recent research (Barrett et al. 
2015) shows that good lighting significantly influences reading, vocabulary and science test 
scores. Above 500 lux is acceptable but above 1,000 lux is better.  

Challenge: Create a light meter with your students. To do this we will first need a micro:bit 
and a clear idea of what we want it to do. 
 

Algorithm: Expressed as a simple sequence of steps 
What is the sequence of steps needed to achieve this digital solution?  

• Have the micro:bit report on the light level.  
• Compare that light level to the lux light level indicated by an app 

on a smart phone.  
• Program the micro:bit to convert its reported light level to 

something similar to the lux readout of the app; that is, we need 
to code the micro:bit to reflect the true temperature of the room.  

• When the user presses button A the calibrated lux level is shown. 

We will use the Microsoft MakeCode website www.makecode.microbit.org to create this in 
visual programming. The code to get a light level can be as simple as that shown in Figure 5.  

However, we want to do a few things with the light level value, so we will: 

1. store it in a variable (see glossary and useful links on page 37) 
2. apply a formula to convert the level to something simple that says if it is too dark or at an 

‘OK’ lux level (‘lux’ may need to be explained before you proceed, depending on 
students’ age/knowledge/ability – see glossary) 

3. create a table (such as the one shown in Table 1) with micro:bit reported light levels and 
lux readings from a phone app placed next to each other. This way these values can be 
compared easily. For this activity we don’t need to go into too much depth or accuracy.  
 

Table 1: micro:bit and phone app lux values on a scale of healthy light* 
Micro:bit value Phone app lux value Healthy light? 

12 41 Too dark 

17 57 Too dark 

35 190 Too dark 

44 230 Too dark 

53 307 Still too dark 

56 345 Still too dark 

84 429 Still too dark 

88 471 Still too dark 

102 592 Light level OK (boundary level) 

224 2017 Light level OK 

255 5000 Light level OK 
* Above 500 lux is acceptable but above 1,000 lux is better. 

3 

Figure 5 

http://www.makecode.microbit.org/


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

The data in Table 1 have been grouped in this way: 

• Dark blue – the lux values are around 3–5 times the micro:bit value (too dark)  
• Mid blue – the lux values are around 6 times the micro:bit value (still too dark)  
• Light blue – the boundary level – at around 100 indicates a lux value of about 500 (light 

level is OK)  
• White – the lux values are around10 times or more the micro:bit value (light level is OK). 

So, using micro:bit values, 88 is becoming a reasonable light level, 102 is a reasonable light 
level and 224 is desirable. 

 

Algorithms: Expressed in pseudocode/English 
How could these steps be expressed in pseudocode? 

 
Get the light level 

If the light level is below 100 

Then it’s too dark 

Else  

The light level is fine 

 

Coding the micro:bit using visual programming 

Students can use the www.makecode.microbit.org website to create the visual program as 
shown in Figure 6. This can then be tested on screen with the emulator (virtual micro:bit) and 
finally downloaded to a physical micro:bit for testing. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 6 

4  

http://www.makecode.microbit.org/


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

Part A: Measuring light level  

Intended cohort: Years 7–8 

Context: Poor lighting is a significant barrier to learning. Recent research (Barrett et al. 
2017) shows that good lighting significantly influences reading, vocabulary and science test 
scores. Above 500 lux is reasonable but above 1,000 lux is desirable.  

Challenge: Create a light meter with your students.  

This activity provides a great opportunity to discuss why calibration of a device is important; 
that is, how this will set up the micro:bit to report approximate lux values.  

• Dark blue – the lux values are between 3 and 5 times the micro:bit value – we will use 4 
• Mid blue – the lux values are around 6 times the micro:bit value – we will use 6 
• Light blue – the boundary level – at around 100 that indicates a lux value of about 500  
• White – the lux values are 10 times or more the micro:bit value – we will use 10 

Initially you could take the students through the following visual programming exercise to 
explore calibration using the in-built light sensor and Table 1. 

 

Algorithms: Expressed in pseudocode/English 

How could these steps be expressed in pseudocode? 

 
Create a variable called level to store the light level 

Create a variable called lux to store the lux calculation 

Get the light level 

If level is below 50 

Then set lux to level x 4 

Else if the level is below 100 

Then set lux to level x 6 

Else 

Set lux to level x 10 

 
 
Coding the micro:bit using visual programming 
Students can use the www.makecode.microbit.org website to create the visual program 
shown in Figure 7. This can then be tested on screen with the emulator (virtual micro:bit) and 
finally downloaded to a physical micro:bit for testing. 

Of course, students should be able to come up with their own tables and boundary values 
after a bit of experimentation. Some of that experimentation is explained further on in this 
tutorial.  

At this point we will introduce an inexpensive external board called MonkMakes Sensor 
Board (Figure 9) for students to explore ways to extend the micro:bit’s capabilities. This is 
beneficial for students but optional. Therefore, you may choose to ignore the sensor board 
code that follows and continue with just the micro:bit.  

5  

http://www.makecode.microbit.org/


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coding the micro:bit using general-purpose programming (MicroPython) 

Students can code in a general-purpose programming language such as Python. In this 
tutorial we have used MicroPython, which can be used with Mu editor 
www.codewith.mu/en/download, as shown in Figure 8.  
 

 

Figure 8 

 

Figure 7 

6  

https://codewith.mu/en/download


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

Adding an external sensor  

For this tutorial we are using a MonkMakes Sensor Board. This board has three built-in 
sensors which we will be using: a thermometer, a light sensor and a sound sensor. We will 
be combining code using these sensors, and explain why along the way, so that students 
(and you) get a good understanding of what is going on.  

Remember our aim is to create environmental monitors for the classroom to help ensure an 
optimal learning space. Introducing students to external sensors is a necessary part of this 
whole exercise.  

 

Connecting the micro:bit and the sensor board  

The MonkMakes Sensor Board must connect to the 
micro:bit. The diagram at Figure 9 shows how this is 
done using alligator clips that connect to the gold 
teeth at the bottom of the micro:bit. When students 
do this, remind them to ensure that they have not put 
the alligator clips over any adjacent teeth (the fine 
vertical lines between the labelled larger pins). 

Once connected, the sensor board is powered via 
the micro:bit (3V and GND) and for this example the 
light sensor is connected to pin 2. The next step is to 
code the micro:bit to display what the sensor is 
reporting.  

The initial values can be read using visual 
programming las simple as the example in Figure 10 
which has been created in MakeCode. This code 
doesn’t mean much though if the equivalent lux 
value of the environment isn’t known. We created 
the following example of how students could do this. 

First, we used a lux meter (mobile phone app) to find 
an area in a room that was about 500 lux. We then 
put the sensor board in the same spot with the same 
angle – we found the angle of the sensor can affect 
readings – so we placed it flat on the desk and made 
sure our shadow was in the way. We did the same 
for 1,000 lux. The readings provided boundary 
values to inform our visual programming. 

We used the code shown in Figure 10 (visual 
programming) and collected the data shown in 
Table 2. You could do this in MicroPython, general-
purpose programming language (Figure 11).  

Students should collect the same data if they have 
access to a smart phone and a relevant lux app.    

Note: The red ‘analog read pin …’ block shown in 
Figure 10 is located in Pins. 

Figure 9: A micro:bit (top) and MonkMakes 
sensor board (bottom) 

Figure 10 

7  



 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

 

 

 

 

 

 

 

 

 

Sensor board value Phone app lux value Healthy light?  
< 17 < 500 Too dark 

17 503 Light level OK 

23 1067 Light level ideal 

 

Algorithms: Expressed in pseudocode/English 
How could these steps be expressed in pseudocode? 

Our algorithmic thinking to convert this into an environmental monitor will be very similar to 
what we have already used: 

 

Get the value from pin 2 

Create a variable called level to store the value from pin 2 

If level is below 17 

Then show sad face and show level 

Else if the level is below 23 

Then show happy face and show level 

Else 

Show heart and show level 

 
 

Coding the micro:bit using visual programming  

The code using www.makecode.microbit.org website to carry out our algorithmic thinking is 
shown in Figure 12. 

Students may ask: “Why does it work when 7 is less than 17 but it is also less than 23?” The 
answer is that the micro:bit goes through the code line by line. As soon as it finds a 
comparison that is true (7 is less than 17) it doesn’t bother looking at any other parts of the 
IF ELSE IF ELSE block. 

  

Table 2: Indoor sensor board and lux values 

8  

Figure 11 

http://www.makecode.microbit.org/


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

When students can successfully measure suitable 
light levels in their classroom and a visual alert 
warns them if the light is too low, we can move on 
to measuring another factor that can affect 
learning: temperature. 

For Years 5–6 students we will just use the in-built 
micro:bit temperature sensor. For Years 7–8 
students, instead of using the in-built thermometer 
in the micro:bit, we are going to use the 
MonkMakes Sensor Board. Why? Well, basically 
because it may prove more accurate and it 
introduces students to a whole new world of 
experimentation and control of their environment 
that they cannot get just from the micro:bit.  
 

 

 

Coding the micro:bit using general-
purpose programming (MicroPython) 

Students can code in a general-purpose 
programming language such as MicroPython, 
which can be used with Mu editor 
www.codewith.mu/en/download, as shown in 
Figure 13. 

 

 

Figure 13 
  

Figure 12 

9  

https://codewith.mu/en/download


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

Part B: Measuring temperature 

Intended cohort: Years 5–6 

Context: Research by Graff Zivin et al. (2018) suggests that warmer classrooms (above 
21 ºC) have a negative effect on learning and this becomes statistically significant above 
26 ºC. Another study https://tinyurl.com/y8pzrdod confirms that students who experience 
more hot days during the year perform worse on subsequent standardised exams.  

Challenge: Create a digital thermometer with your students. For the younger students we 
will just use the in-built micro:bit temperature sensor. 

 

Algorithms: Expressed in English/pseudocode 
How could these steps be expressed in pseudocode? 

 
Get the temperature level 

If the temperature level is below 26 degrees Celsius 

                       Then that’s fine 

Else  

The temperature is too high 

  

Coding the micro:bit using visual programming 

Students can use the www.makecode.microbit.org website to 
create the visual program shown in Figure 14.  

We could add another readout to make the device more 
informative. Underneath the tick and the cross you could add 
two lines saying to pause for a second and then show the 
temperature.  

This addition to the code is shown in Figure 15. 

 
Possible extension 
It is easy enough to get the micro:bit to display the 
temperature, but wouldn’t it be great to have it sound an 
alarm if the temperature gets too warm or too cold?  

We will get to that with the approach for Years 7–8 or more 
advanced students. You could do this with Years 5–6 
students if you wish.  

 

  

Figure 15 

Figure 14 

10  

https://www.usatoday.com/story/opinion/2019/08/15/heat-wave-students-need-air-conditioning-close-achievement-gap-column/1996394001/
http://www.usatoday.com/story/opinion/2019/08/15/heat-wave-students-need-air-conditioning-close-achievement-gap-column/1996394001/
http://www.makecode.microbit.org/


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

Part B: Measuring temperature  
Intended cohort: Years 7–8 

Context: Research by Graff Zivin et al. (2018) suggests that warmer classrooms (above 
21 ºC) have a negative effect on learning and this becomes statistically significant above 
26 ºC. Another study www.tinyurl.com/y9m3jbwx confirms that students who experience 
more hot days during the year perform worse on subsequent standardised exams.  

Challenge: Create a digital thermometer with your students.  

Preparation: The micro:bit has a number of gold teeth, as you have already discovered. We 
can use those teeth to attach to the temperature sensor on 
the sensor board.  
At Figure 16 is a diagram of a sensor board attached to the 
micro:bit showing it just getting information from the temperature 
sensor. Notice that there are two other sensors: one for sound 
and the other (which we have already used) for light. 

An activity might be for your students to find out what is 
more accurate – onboard temperature sensors on the 
micro:bit or external sensors such as the MonkMakes 
Sensor Board sensing the same conditions.  

NB: If you don’t have a MonkMakes sensor (they are about 
$15) then you could code this just using the in-built 
temperature sensor.  

The reason we are introducing this sensor board at this time 
is that it will be needed for sound levels later on, and it 
avoids a MakeCode issue we discovered when combining 
the onboard light sensor and the sensor board temperature 
sensor into one piece of code. You can see the issue in this 
short video https://youtu.be/mqbrFcdi0Es (4 min).  

This time, the temperature level is going to be coming from 
an external sensor via pin 1. At this stage, tell students that 
there are three pins we can use to collect data from external 
sensors. On the micro:bit they are labelled 0, 1 and 2 and 

are at the bottom on the gold ‘teeth’. There are many more pins, but students don’t need to 
know about those at this point. To keep it simple at this stage, disconnect the light sensor 
from the light level activity if it isn’t already. We will combine the two at the end of this 
section. To get the temperature we need to do a bit of mathematics. First let’s work out why.  

Attach the sensor board to the 
micro:bit just like in the diagram in 
Figure 16. Use the visual 
programming code in Figure 17 or the 
MicroPython general-purpose 
programming in Figure 18 to get a 
reading from pin 1. 

 

 Figure 17 

Figure 16 

11  

https://www.usatoday.com/story/opinion/2019/08/15/heat-wave-students-need-air-conditioning-close-achievement-gap-column/1996394001/
http://www.usatoday.com/story/opinion/2019/08/15/heat-wave-students-need-air-conditioning-close-achievement-gap-column/1996394001/
https://youtu.be/mqbrFcdi0Es


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

 

Figure 18 

 

The number that is shown is an analog number between 0 and 1023 which reflects how 
much electricity is going through the sensor.  

When we ran the code the numbers 465 and 466 came up. These are a measurement of 
electrical (kinetic) energy. We need to work out how to convert those numbers into  
degrees Celsius.  

So students can see the value the sensor board is returning, have them gently put their 
finger on the temperature sensor: they should be able to see the reading increase.  

You may want to explain that the values generated indicate a measurement (in volts) of how 
much energy is able to pass through the sensor.  

 

Managing and interpreting the sensor data  

To convert the numbers that the sensor is reporting, we need to turn them into something 
that makes much more sense than a measure of electrical (kinetic) energy. 

There are three approaches we could take:  

• Use a ‘black box’ approach that allows students to use a pre-built code block to display a 
fairly accurate temperature. Students just apply the code block without understanding the 
mathematics behind it.  

• Collect some data and calibrate the micro:bit – the ‘calibration approach’.  
• Apply the Steinhart – Hart equation to the data we are reading. 

The first two approaches are described below. The Steinhart – Hart equation is beyond the 
level of this tutorial but would have its place in Years 9–12. 

 

 
 
 
 
 
 
 
 
 

12 

https://www.ametherm.com/thermistor/ntc-thermistors-steinhart-and-hart-equation#:%7E:text=The%20Steinhart%20and%20Hart%20Equation,thermistors%20and%20NTC%20probe%20assemblies.&text=Knowing%20A%2C%20B%20and%20C,Hart%20equation%20in%20two%20ways.


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

The black box approach 
If you want your students to just get the readings from the sensor, which are then 
automatically converted to an approximate temperature value: 

1. Open www.makecode.microbit.org, click on ‘New Project’, then complete the Create a 
Project box. Next click on Extensions (Figure 19) under Advanced (Figure 20).  

2. Search for ‘Monk’ in the search bar (Figure 21) and choose the sensor extension that 
comes up (Figure 22).  

You will then have a new set of blocks called Sensor (Figure 23). The video at the following 
link explains the process https://youtu.be/sx6OIfdg3sE (1 min). 

 

 

 

 

 

 
 
 
 

 

With the temperature block (Figure 23) we can quickly get the temperature from the sensor 
board. Again, our code will be based on the following algorithmic thinking/pseudocode. 
 

 

Algorithms: Expressed in pseudocode/English 

How could these steps be expressed in pseudocode? 

 
Get the temperature level 

If the temperature level is below 26 degrees Celsius 

          Then that’s fine, display a tick, then the temperature 

Else  

          The temperature is too high – display a cross, then the temperature 

  

Figure 19 Figure 20 

Figure 21 

13  

Figure 22 Figure 23 

http://www.makecode.microbit.org/
https://youtu.be/sx6OIfdg3sE


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

Coding the micro:bit using visual programming  
The code that we will use is not too dissimilar to 
the code used for Years 5–6, except that we 
are asking an external device to provide the 
values (Figure 24).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The calibration approach 

Why bother with this approach if the black box approach works? Well, this approach covers 
a lot of the collection, analysis and representation of data key concepts in Digital 
Technologies, as well as the specification, algorithms and implementation key concepts.  
The black box approach does as well but not as explicitly nor to the same degree; however, 
it does illustrate the concept of abstraction. The calibration approach basically explains the 
formula in the black box approach (page 13), taking the ‘black box’ away so students 
understand what is actually happening.  

To complete this approach, the students need access to a digital thermometer. We picked 
one up at a local supermarket for about $10.  

The way for students to do this is to get two known different temperatures and the sensor 
values for those same temperatures. We recorded an indoor temperature as well as an 
outdoor temperature that was in the shade. Students could record a temperature first thing in 
the morning and another around lunchtime (provided they were quite different readings). 
Students then apply a fairly simple formula to convert the sensor value to a temperature 
within the micro:bit code.  

We will use a table to collect our data and apply our formula: 

Celsius = (reading x C) – D (see Table 3)  

Figure 24 

14  



 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

This formula comes from MonkMakes and it provides a simple way to apply a formula that 
does just about the same thing as the Steinhart – Hart equation, without all the difficult 
mathematics.  

The filled in data are shown in Table 3. 

 

Table 3: Sample temperature data 
Data collected Name we give it Value reported 
Thermometer reading (current room temperature) t1 18 

Sensor reading (current room temperature) r1 430 

Thermometer reading (different temperature) t2 10 

Sensor reading (different temperature) r2 330 

Formula application   

A = t1 – t2 A 18 –10 = 8 

B = r1 – r2 B 430 – 330 = 100 

C = A / B C 0.08 

D = t2 – (C * r2) D 10 – (0.08 x 330) 
10 – 26 
= –16 

 

So in our example, A = 8, B = 100, C = 0.08 and D = –16. 

A is the difference between the two thermometer readings. 

B is the difference between the two sensor readings. 

C represents the voltage change per degree. 

D is the second thermometer reading minus the change per degree multiplied by the second 
sensor reading.   

To get the temperature we use C and D as well as the voltage reading. Our final formula 
based on our collected data is: Celsius = reading x 0.08 – 16.  

So if the voltage is 427 we get a temperature of 18 degrees Celsius. 

The final formula we used is for the readings taken for the conditions we were in. Your 
readings/numbers will of course be different from these. It is the process that the students go 
through that is important. If you are using a different temperature sensor than the one used 
in this tutorial, you may need to apply a different formula.  

To make it simpler to refer to the temperature that is calculated by the formula we will create 
a variable called ‘temp’ to store the calculated temperature and create the code (Figure 25). 

15 



 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

 

We used the ‘round’ function, otherwise there would be many decimal places shown. 
Students could experiment with and without the round block to see which is more user 
friendly.  

If students put the various blocks in the wrong spot, then the readings will be way off. The 
easiest way to check is to make sure that the section of code between ‘round’ and ‘reading’ 
has a double border line. It is hard to see, so here it is magnified and indicated with an arrow 
in Figure 26.  

 

This video shows how to build the set temp block in the correct order: 
https://youtu.be/nq1uu2490bk (2 min). 

The sequence for the code is shown step by step in Figure 27.  

 

Figure 26 

16 

Figure 25 

https://youtu.be/nq1uu2490bk


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

The code using the calibration 
method contains only two 
different lines to the black box 
method (Figure 28). 
Encourage students to try 
working it out for themselves 
first. Comparing the two 
methods might also lead to a 
discussion related to the 
Digital Technologies key 
concept, abstraction; that is, 
hiding unnecessary details.  

 

 

 

 

 

 Figure 28 

Figure 27: Steps for building the set temp block in the correct order 

17 



 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

Coding the micro:bit using general-purpose programming (MicroPython) 

Students can code in a general-purpose programming language such as MicroPython, which 
can be used with Mu editor www.codewith.mu/en/download, as shown in Figure 29. 

 
 

 

Adding an alarm 

Now that we can get the temperature, we 
need to add an alarm that will beep if the 
temperature gets too warm. This could be 
added to both the Years 5–6 and Years  
7–8 student projects.  

To begin with we will use a simple 
Keyestudio buzzer that we sourced from 
the internet for a few dollars (Figure 30).  

Notice that it has three pins: 

–  connects to GND 

+ connects to 3V 

S connects to a spare pin on the micro:bit. 

18 

Figure 30: Image source: 
https://wiki.keyestudio.com/File:361-10.png 

 

Figure 29 

https://codewith.mu/en/download
https://wiki.keyestudio.com/File:361-10.png


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

 

 

Next, we will connect this to the micro:bit and sensor board we have already set up (Figure 
16). To do this, follow the diagram shown in Figure 31. 

Note that the green signal lead (S) is connected to pin 0 on the micro:bit. We will need to 
remember this in our coding. Connecting it to pin 0 wasn’t an accident, as we will discover 
shortly.  

Now to get the alarm to work we just need to tell the micro:bit to send a signal out of pin 0 if 
our boundary value (26 degrees from the research above) is reached.  

 

Algorithms: Expressed in pseudocode/English 
How could these steps be expressed in pseudocode? 

 
Get the temperature level 

If the temperature level is below 26 degrees Celsius 

        Then that’s fine, display a tick, then the temperature 

Else  

        The temperature is too high – display a cross, then the temperature 

        Also sound an alarm for a second 

 

 

 

 

Figure 31 

 

19 



 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

Coding the micro:bit using visual programming  

After setting up the code shown in Figure 32, we 
now have a micro:bit that can sense temperature 
and alert us if it gets too high for conducive learning 
to take place in the classroom.  

If you are happy for the students to experiment with 
some other tones or alarms then they could try 
using some of the music blocks in MakeCode (like 
the ‘dadadum’ melody, for example), instead of the 
digital write pin 0 blocks.  

An interesting thing for them to do then would be to 
connect the buzzer to pin 2 instead, recode and see 
if the melodies still play. This could lead to a 
discussion about pin 0 having some different 
properties compared with pin 2.  

Following in Figure 35 is the extra code we need 
added to the ‘black box’ code. If your students did 
the calibration method, then they should be able to 
work out where to place the necessary extra blocks.  

 

 

 

 

Coding the micro:bit using general-purpose programming (MicroPython) 

The MicroPython code is shown in Figure 33 and as an alternative with music that plays 
when the temperature gets too high in Figure 34.  

 

Figure 33 

Figure 32 

20 



 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

 

Figure 34 

 

Combining codes 

If we combine our temperature code with the code that visually alerts us if the light is too low 
then we have covered two conditions that research proves are important for optimal learning.  

We will use the calibration code (including the alarm code) and combine it with the light level 
code. Initially our code looks like that shown in Figure 35.  

This code is starting to get a bit complex and hard to read because it is getting too long and 
doing two different things which take time to read through and can cause confusion. 

It is also hard to understand because the second half refers to level, but what sort of level is 
it? Is it light? Sound? Water? Air pressure? We will need a better variable name. Computer 
programmers refer to this as intrinsic documentation and it is really important for readability 
and maintainability. Maintainability refers to how easy it is for other programmers to make 
necessary changes to your code.  

Computer programmers often break code up into logical smaller blocks called procedures or 
functions. Basically, these are self-contained pieces of code that can be called upon at any 
time by other parts of a program.  

In the next section we will break our code up into more logical chunks. 

21 

Poole, Deanne
There are some great terms being used in here. Each one is explained so probably don’t need to add to a glossary but it might be good to group this coding terminology in one place at the end.

Poole, Deanne
Including: ProceduresFunctions



 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35 

22 



 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

Coding the micro:bit using general-purpose programming (MicroPython) 

The MicroPython code is shown combining light and temperature using the micro:bit in 
Figure 36 and with the MonkMakes Sensor Board in Figure 37.  

 

Figure 36 

 

Figure 37 

23 



 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

Creating some functions 

In Microsoft MakeCode if you go into the advanced blocks at the bottom of the list of blocks 
(below Math) you will see a block to Make a Function (Figure 38).  

 

 

 

 

 

 

The video at this link https://youtu.be/LGaTYz022mk demonstrates the whole process  
(3 min). Figure 39 shows the same code as previously seen in Figure 35, but broken up into 
three separate pieces of code:  
• a function to getTemperature 
• a function to getLight 
• a forever loop which cycles between the two with a one-second break in between.  

Compare the two different ways to write the same code. Which one do you find easier to 
understand and read? This could lead to a discussion about abstraction and hidden code, 
code libraries etc. 

Figure 38 

Figure 39 

24 

https://youtu.be/LGaTYz022mk


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

Of course, for the temperature and light to both provide data to the micro:bit and for the 
alarm to function we need to connect it all up together. Figure 40 is a diagram showing the 
correct connections. Your students could probably work it out for themselves at this stage.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

You could get your students to experiment to get the alarm to chirp longer than it does in the 
code presented. Then again, to save sanity, maybe don’t tell them!  

 

 

 

 

 

 

 

 

  

Figure 40 

 

25 



 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

Part C: Measuring sound level  

Intended cohort: Years 5–6 or 7–8 

Context: Classroom sound signatures can affect how well students achieve (Picard and 
Bradley 2001 www.ncbi.nlm.nih.gov/pubmed/11688542). Studies by James et al. (2012) and 
Anderson (2001) show that ‘children from classrooms with poor acoustics have lower literacy 
and numeracy skills, are less productive in the workforce, and tend to be in lower paid jobs 
than those from classrooms with good acoustics’ (in Mealings 2016  
www.tinyurl.com/y8dqypl2). Anything above approximately 72 decibels starts to get 
disruptive. Above 50 makes concentrating difficult.  

Challenge: Create a sound monitor with your students.  

Preparation: On the MonkMakes Sensor Board there is a third sensor (in addition to 
temperature and light) which can detect sound. Unlike temperature and light, the micro:bit 
does not have an in-built sound sensor. If students want to monitor their classroom for 
suitable noise levels, some sort of microphone sensor which works with a micro:bit is 
needed.  

For this tutorial we will use the MonkMakes Sensor Board. What you may have noticed is 
that the 0, 1, 2, 3V and GND pins have all been used on the micro:bit to get the temperature, 
light and alarm operating (Figure 40).  

There are breakout boards or edge connectors www.tinyurl.com/y9h4vjyf available for the 
micro:bit which allow you to utilise all 21 pins, including all the little pins in between the larger 
labelled pins just mentioned. We won’t use one of those here. Instead, we will just code 
another micro:bit and connect it up to the sensor board as a stand-alone sensor.  

If you have read the research findings at the start of this part, you will be aware that sounds 
above 72 decibels are regarded as disruptive, although noise over 50 might be annoying if 
you are trying to concentrate. We are going to use the sensor board to provide sound levels 
for the micro:bit and tell it when the noise level is too high and to sound an alarm to alert the 
students that the environment is no longer conducive to optimal learning. Here is how we will 
do that.  

 
Connecting the Sound 
(microphone) sensor  
 

Connect pin 0 to the S pin on the 
buzzer. Next, connect the sound 
sensor to pin 1 or pin 2. In 
Figure 41 we have used pin 1. 
Finally, we need to connect the 
power connectors as we had 
them before.  

 

 

 Figure 41 

26 

https://www.ncbi.nlm.nih.gov/pubmed/11688542
https://tinyurl.com/y8dqypl2
https://core-electronics.com.au/kitronik-edge-connector-breakout-board-for-bbc-micro-bit.html?utm_source=google_shopping&gclid=Cj0KCQjww_f2BRC-ARIsAP3zarGBhuyfcTdq31GgmDxw28HqXJqI37vMJtWdukI4KGbsgkdS8fXpoRMaAnKiEALw_wcB


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

Experimenting with the sound sensor 

The sound sensor is connected to pin 1. It supplies 
an analog signal between 0 and 3 V. The signal 
swings above and below a midpoint of about 1.5 V. 
Let’s code the micro:bit to show this.  

We are going to graph the results that the micro:bit 
receives from the sensor board.  

The visual programming code to start on our noise 
level journey is shown in Figure 42 and in MicroPython in Figure 43. 
 

 

Figure 43 
 

You will notice that even when a space is really quiet, 
about half of the LEDs light up. (On our simulator it 
looks like the image shown at Figure 44.)  

That is because a very quiet environment registers at 
about 500 (which is about 1.5 volts). It appears as 
though there is much greater noise when it is actually 
really quiet.  

NB: Noises that are greater than this register at above 
or below the 1.5 volts. This is due to the way the sensor 
works. To find out more about sinusoidal waves created 
by sound pressure (not necessary to know this to do 
the activity) see www.tinyurl.com/y8e9poa6. 

To resolve this issue we can do some 
mathematics. Since silence starts at 
around 500, if we take about 500 away 
then silence will then be represented by 
about 0 or 1. We are actually going to 
subtract 511. 

Figure 45 

Figure 42 

Figure 44 

27 

http://www.tinyurl.com/y8e9poa6


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

You may remember that the analog 
signals being reported by the sensor 
board fall between 0 and 1023. If we 
take 511 from the highest value then 
that is about half. Have the students try 
the code shown in Figure 45 to see if 
they can get the top two lines of the 
LEDs to light up at all. Of course, they 
won’t be able to because if we are 

taking 511 from any reading, then the top reading can only be 512 (511 + 512 = 1023). We 
have told the graph to plot to 1023, which it won’t get to.  

To get the graph to be more accurate, we need to tell it to make 512 the highest value to 
expect. The finished graph code is shown in Figure 46. Using this code, students should be 
able to get all the rows of LEDs to light up, even momentarily. This video shows this whole 
process https://youtu.be/EidbZE5NK8Y (4 min). 

The graph shown in Figure 47 shows what happens when sounds are detected. Notice that 
the readings oscillate above and below the 1.5 V level.  

 

Figure 47. Source: www.monkmakes.com/downloads/instructions_mb_sensor.pdf 

 

 

 

 

 

 

 

 

Figure 46 

28 

https://youtu.be/EidbZE5NK8Y
http://www.monkmakes.com/downloads/instructions_mb_sensor.pdf


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

Capturing the sound level data 

We are going to stray for a few minutes to explore a really powerful feature of MakeCode for 
micro:bits. When we are watching the LEDs light up, they are being controlled by incoming 
data from the sensor board sound level sensor. There is a lot of data coming in. Wouldn’t it 
be great if we could capture that data for later use or analysis? Well, we can.  

To do this, the micro:bit needs to be paired to the computer that is being used to program it. 
If you haven’t discovered this yet, it is the easiest way to download code to the micro:bit.  

There are two things you will need for a PC, both of which are worth the effort:  

• the latest Chrome browser (at least version 65) or the latest Microsoft Edge browser (at 
least version 83 or the beta version) 

• firmware version 0249 or above installed on your micro:bits. 

When you open the Microsoft micro:bit MakeCode editor and 
open or start a new program you will see a gear symbol near 
the top right (Figure 48).  

When you click the gear icon an option should come up 
saying ‘Pair device’ (Figure 49). If you cannot see that 
option, you will need to upgrade your browser.  

If you have a class set of micro:bits it is best to upgrade them 
all at once. Just download the firmware file and follow the 
instructions for each micro:bit. After the initial download it 
takes only 30 seconds per micro:bit to get them all ready.  

Of course, getting at least version 65 of Chrome may need 
negotiation with whomever looks after your computer 
network.  

This video explains the process of upgrading your micro:bits 
if they cannot seem to pair, and then going through the 
process of pairing https://youtu.be/r1VgzQV8to0 (5 min). 

This is worth doing with your personal or home computer just 
to see the possibilities, even if your school computers’ 
software may need to be upgraded for it to work for the 
students.  

Make sure the micro:bit and your computer are connected by 
a USB cable. When you click on pair device (big green button 
in pop-up), a window comes up and it should have the name 
of the micro:bit in it. Click on the name and then click 
connect. 

Now when you want to download some code, just click the 
purple download button and it automatically goes straight to 
the micro:bit. Better still, when using the plot bar graph block 
of code, a new button will appear called Show console 
Device (Figure 50). 

Figure 48 

Figure 49 

29 

https://youtu.be/r1VgzQV8to0


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

Using Show console Device 

Make sure that your micro:bit is paired with your computer. 
Download the latest code we have written (Figure 46). You 
will see more LEDs lighting up on the micro:bit as the sound 
level increases.  

If you click on the Show console Device button under the 
emulator a graph will appear which is showing in real time 
what the sensor board is picking up.  

Figure 51 shows an example using the initial code. 

 

 

 

 

 Figure 51 

Figure 52 shows what it picked up with the latest code. 

 

 Figure 52 

Notice the almost flatline quiet signal on the top graph (Figure 
51) is at around 500 (look where 827 and 17 are) and it is 
around 0 on the bottom graph (Figure 52).  

If we pause the real-time graphing we can then download 
(Figure 53) the data as a (CSV) file. We can then analyse 
that data in a spreadsheet.  

Take a look at this video to see an example of what you can 
do with these data https://youtu.be/avL9GUGZpzg  
(7 min). 

Students could also add a plot bar graph function to the 
temperature and the light codes as well, and there would be 
a wealth of data to analyse.  

30 

Figure 50 

Figure 53 

https://youtu.be/avL9GUGZpzg


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

We suggest sampling only once every minute to reduce the amount of data that students 
have to deal with. Of course, it would depend on what you were collecting the data for.  

There is a lot that can be done with this graphing and data capture ability. One idea is 
micro:bits sending data via their radio functions to a central micro:bit connected to a 
computer which collects all that data from various parts of the classroom as well as outside. 

 

Getting the sound sensor to alert when it is too loud 

The last thing we will do with this sensor is to get 
it to play an alarm and give a visual cue when the 
sound level gets too loud. 

Again, we have to load the MonkMakes 
extension. The process for doing this is described 
on page 13. Every time we start a new program 
with the MonkMakes Sensor Board we need to 
get the extension blocks again.  

Once we add the sensor board blocks to 
MakeCode we can use the new sound level block 

to help us collect the sound. It will report a sound level between 0 and 100. We tested this 
using the code shown in Figure 54 and also in MicroPython in Figure 55. 
 

 

Figure 45 

Approximate levels captured just through observation are shown in Table 4. 
 

 

 

Figure 54 

31 



 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

Table 4: Sample sound level data  
Sample Our perception Sensor average level App decibels 

A Soft 14 40 

B Medium 23 63 

C Starting to get loud 34 73 

D Quite loud 48 around 78 

 

For classroom ownership, you could lead your class through a discussion of what are 
conducive sound levels and measure them with a mobile app and the sensor board attached 
to the micro:bit.  

Perhaps get the students to raise their hand when they think the classroom level is great for 
learning, getting annoying and really annoying. Students could capture readings at these 
times and use that data to inform their coding.   

That is what we will do with the data we captured in Table 4. We will use a sensor average 
level value of about halfway between soft and medium (so about 17) to be the boundary for 
conducive levels, and a value between medium and starting to get loud (about 28) to 
indicate somewhat annoying noise. Anything between 29 and 36 becomes quite annoying 
noise and above 36 will trigger the alarm for sound that is disruptive to learning levels. These 
are approximations and your class may come up with a different scale.  
 

Algorithms: Expressed in pseudocode/English 

How could these steps be expressed in pseudocode? 

 
Get the sound level 

If the sound level is below or equal to 17  

      Then sound level is OK, show the centre LED  

Else If 

      the sound level is below or equal to 28 

      Then sound level is starting to get annoying, flash a small square 

Else If 

       The sound is below or equal to 36 

       Sound level is quite annoying, flash the large square unfilled square 

Else 

       Level is too high show all LEDs lit, sound alarm for a second 

 

Just note that now that we have our data we don’t need the ‘plot bar graph’ block to allow the 
console device to run so it won’t form part of our code.  

You could change your code if you want the students to continue to be able to track the 
sound levels in real time.  

You may find you also need to change the code to better represent noise levels in your 
classroom. The examples shown in this tutorial were not taken in a classroom environment.  
  

32 



 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

Coding the micro:bit using visual 
programming  
 

As code, the program appears as shown in Figure 56. 

So now we have devices that can measure the 
temperature, sound and light levels in a classroom and 
alert the students and teacher when they get to a level 
that is no longer conducive to effective learning to take 
place.  

Students can take ownership of their environment, 
based on science, and create a positive atmosphere in 
which to learn. This is really powerful as it gives the 
students agency for their own learning.  

 

 

 

 

Coding the micro:bit using general-purpose 
programming (MicroPython) 

The MicroPython code is shown in Figure 57. 

 

Figure 57 

Figure 56 

33 



 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

Part D: Optional extension activities 

As extension, you may like your students to attempt to measure carbon dioxide or air 
pressure levels or to create a master monitoring device. 

Carbon dioxide levels 

Context: Carbon dioxide (CO2) levels play a major part in students’ abilities to learn. With as 
little as 1,000 parts per million and likely lower still, CO2 induces sleepiness, poor 
concentration, abnormal heart rates and even nausea, as expressed in an article about a 
study from the Harvard School of Public Health www.tinyurl.com/yclw6kzu. Similarly, it 
appears that air pollution has an enormous effect on learning. A study reported on in The 
Guardian www.tinyurl.com/y92t7yz9 suggests that high levels of urban pollution have a 
major impact on attainment, with some students dropping a whole year of progress over their 
school lives.  

Challenge: measure CO2 and create an alarm when readings reach a certain level. 

Air pressure 

Context: Air pressure may play a role in affecting cognitive abilities. This is under research; 
however, the common complaint of sinus headaches when air pressure changes will 
obviously affect one’s ability to learn. Think about how your students behave on a windy day. 

Challenge: measure air pressure and create an alarm when readings reach a certain level. 

Create a master monitoring device 

You may want students to make a central computer which is monitoring all the sensors 
covered in this tutorial.  
  

34 

https://thinkprogress.org/exclusive-elevated-co2-levels-directly-affect-human-cognition-new-harvard-study-shows-2748e7378941/
https://tinyurl.com/y92t7yz9


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

Links to the Australian Curriculum  
Tables 5 and 6 give teachers an opportunity to see related aspects of the Australian Curriculum. 
Table 5: Aspects of the Australian Curriculum: Digital Technologies Years 5–6 which may be 
addressed depending on the task. 

Digital 
Technologies  
Achievement 
standard   

By the end of Year 6, students explain the fundamentals of digital system 
components (hardware, software and networks) and how digital systems are 
connected to form networks. They explain how digital systems use whole 
numbers as a basis for representing a variety of data types. 
 
Students define problems in terms of data and functional requirements and 
design solutions by developing algorithms to address the problems. They 
incorporate decision-making, repetition and user interface design into their 
designs and implement their digital solutions, including a visual program. They 
explain how information systems and their solutions meet needs and consider 
sustainability. Students manage the creation and communication of ideas and 
information in collaborative digital projects using validated data and agreed 
protocols.  

Strands  Digital Technologies knowledge and understanding  
• Digital systems 
Digital Technologies processes and production skills  
• Collecting, managing and analysing data  
• Creating designed solutions by: 

– investigating and defining 
– generating and designing 
– producing and implementing 
– evaluating 

Content 
descriptions  

• Examine the main components of common digital systems and how they may 
connect together to form networks to transmit data (ACTDIK014) 

• Acquire, store and validate different types of data, and use a range of software 
to interpret and visualise data to create information (ACTDIP016)  

• Design a user interface for a digital system (ACTDIP018) 
• Design, modify and follow simple algorithms involving sequences of steps, 

branching, and iteration (repetition) (ACTDIP019)  
• Implement digital solutions as simple visual programs involving branching, 

iteration (repetition), and user input (ACTDIP020)  

Key concepts  • abstraction 
• data collection  
• data interpretation  
• specification 
• algorithms 
• implementation 
• digital systems 
• interactions 
• impact 

Key ideas  Thinking in Technologies  
• computational thinking  
• systems thinking 
  

Cross-
curriculum 
priorities  

  

  
  

General 
capabilities  
  

• Information and Communication 
Technology (ICT) Capability  

• Literacy  
• Numeracy  

  

35 

http://www.scootle.edu.au/ec/search?accContentId=ACTDIK014
http://www.scootle.edu.au/ec/search?accContentId=ACTDIP016
http://www.scootle.edu.au/ec/search?accContentId=ACTDIP018
http://www.scootle.edu.au/ec/search?accContentId=ACTDIP019
http://www.scootle.edu.au/ec/search?accContentId=ACTDIP020


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

Table 6: Aspects of the Australian Curriculum: Digital Technologies Years 7–8 which may be 
addressed depending on the task. 

Digital 
Technologies  
Achievement 
standard   

By the end of Year 8, students distinguish between different types of networks 
and defined purposes. They explain how text, image and audio data can be 
represented, secured and presented in digital systems.  
 
Students plan and manage digital projects to create interactive information. They 
define and decompose problems in terms of functional requirements and 
constraints. Students design user experiences and algorithms incorporating 
branching and iterations, and test, modify and implement digital solutions. They 
evaluate information systems and their solutions in terms of meeting needs, 
innovation and sustainability. They analyse and evaluate data from a range of 
sources to model and create solutions. They use appropriate protocols when 
communicating and collaborating online. 

Strands  Digital Technologies knowledge and understanding  
• Digital systems 
Digital Technologies processes and production skills  
• Creating digital solutions by: 

– Investigating and defining 
– generating and designing 
– Producing and implementing 
– Evaluating 

Content 
descriptions  

• Investigate how data is transmitted and secured in wired, wireless and mobile 
networks, and how the specifications affect performance (ACTDIK023) 

• Define and decompose real-world problems taking into account functional 
requirements and economic, environmental, social, technical and usability 
constraints (ACTDIP027) 

• Implement and modify programs with user interfaces involving branching, 
iteration and functions in a general-purpose programming language 
(ACTDIP030) 

• Evaluate how student solutions and existing information systems meet needs, 
are innovative, and take account of future risks and sustainability 
(ACTDIP031) 

Key concepts  • abstraction 
• data collection 
• data interpretation 
• specification 
• implementation 
• digital systems 
• impact 

Key ideas  Thinking in Technologies  
• computational thinking  
• systems thinking 
  

Cross-
curriculum 
priorities  

  
  General 

capabilities  
• Information and Communication 

Technology (ICT) Capability  
• Literacy  
• Numeracy 

 

  

36 

http://www.scootle.edu.au/ec/search?accContentId=ACTDIK023
http://www.scootle.edu.au/ec/search?accContentId=ACTDIP027
http://www.scootle.edu.au/ec/search?accContentId=ACTDIP030
http://www.scootle.edu.au/ec/search?accContentId=ACTDIP031


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

Useful links 

Find out more about the micro:bit www.microbit.org  

• Code the micro:bit at www.makecode.org  
– Block code within MakeCode: https://makecode.microbit.org/  

Find out more about variables: 

• https://makecode.microbit.org/blocks/variables/var 
• https://makecode.microbit.org/courses/csintro/variables 

Teachers or students wishing to explore these activities in a general-purpose programming 
language including Python and MicroPython: 

• Code in Python inside MakeCode: https://python.microbit.org/v/1.1 
• Python for beginners https://www.python.org/about/gettingstarted/ 
• Code in MicroPython with Mu editor. Download site: https://codewith.mu/en/download 

 

Glossary 

General-purpose programming languages Programming languages in common use 
designed to solve a wide range of problems. They include procedural, functional and object-
oriented programming languages, including scripting and/or dynamically typed languages. 
Examples of general-purpose programming languages include C#, C++, Java, JavaScript, 
Python, Ruby and Visual Basic.  

Lux A measure of the illumination or amount of light produced by something. For example, 
we can use a light meter/lux meter to measure the light produced by a light bulb.  

Pseudocode A way of showing algorithms without use of any specific programming 
language. This makes the algorithm easy to understand for everyone whatever programming 
language they might use. Pseudocode may be written in English text with some common 
operation words used. For example: if and else. 

Variables Created by programmers to hold the value of data that may change. For example, 
a variable may be created to hold the player’s score in a game. 

Visual programming A programming language or environment where a program is 
represented and manipulated graphically rather than as text. A common visual metaphor 
represents statements and control structures as graphic blocks that can be composed to 
form programs, allowing programming without having to deal with textual syntax. Examples 
of visual programming languages include: Alice, GameMaker, Kodu, Lego Mindstorms, MIT 
App Inventor, Scratch (Build Your Own Blocks and Snap). 
 
See also www.australiancurriculum.edu.au/f-10-curriculum/technologies/glossary/ 
 

Disclaimer: ACARA does not endorse any product or make any representations as to the quality of such 
products. This resource is indicative only. Any product that uses material published on the ACARA website 
should not be taken to be affiliated with ACARA or have the sponsorship or approval of ACARA. It is up to each 
person to make their own assessment of the product, taking into account matters including the degree to which 
the materials align with the content descriptions and achievement standards of the Australian Curriculum. The 
Creative Commons licence BY 4.0 does not apply to any trademark-protected material.  

 

 
All images in this resource used with permission 

37 

http://www.microbit.org/
http://www.makecode.org/
https://makecode.microbit.org/
https://makecode.microbit.org/blocks/variables/var
https://makecode.microbit.org/courses/csintro/variables
https://python.microbit.org/v/1.1
https://www.python.org/about/gettingstarted/
https://codewith.mu/en/download
http://encyclopedia.kids.net.au/page/al/Algorithm
http://www.australiancurriculum.edu.au/f-10-curriculum/technologies/glossary/


 

Developed by ACARA’s Digital Technologies in focus project 
Australian Government Department of Education and Training CC BY 4.0  

Bibliography 

Allen, J. G., MacNaughton, P., Satish, U., Santanam, S., Vallarino, J. & Spengler, J. D. 
(2016). Associations of cognitive function scores with carbon dioxide, ventilation, and volatile 
organic compound exposures in office workers: a controlled exposure study of green and 
conventional office environments. Environmental health perspectives, 124(6), 805–812.   
  
Barrett, P., Davies, F., Zhang, Y. & Barrett, L. (2015). The impact of classroom design on 
pupils' learning: Final results of a holistic, multi-level analysis. Building and Environment, 89, 
118–133.  
  
Carrington, D. & Kuo, L. (2018). Air pollution causes ‘huge’ reduction in intelligence, study 
reveals. The Guardian, Aug  27. Retrieved 
from https://www.theguardian.com/environment/2018/aug/27/air-pollution-causes-huge-
reduction-in-intelligence-study-reveals  
  
Graff Zivin, J., Hsiang, S. M. & Neidell, M. (2018). Temperature and human capital in the 
short and long run. Journal of the Association of Environmental and Resource Economists, 
5(1), 77–105.   
  
Heppell, S. (n.d.). Learnometer. Retrieved from http://www.learnometer.net/  
  
Mealings, K. (2016). Classroom acoustic conditions: Understanding what is suitable through 
a review of national and international standards, recommendations, and live classroom 
measurements. Conference paper, Acoustics 2016 Brisbane. Available 
at https://www.researchgate.net/publication/310651345_Classroom_acoustic_conditions_Un
derstanding_what_is_suitable_through_a_review_of_national_and_international_standards_
recommendations_and_live_classroom_measurements  
  
Mooney, C. (2015). Paper finds a surprising link between warmer temperatures and math 
test scores. The Washington Post. Retrieved 
from https://www.washingtonpost.com/news/energy-environment/wp/2015/05/12/paper-
finds-a-surprising-link-between-warm-temperatures-and-math-test-
scores/?postshare=7651431446442153  
  
Park, R. J. (2019). Heat wave: Air conditioned schools would narrow the racial achievement 
gap. USA Today. Retrieved from https://www.usatoday.com/story/opinion/2019/08/15/heat-
wave-students-need-air-conditioning-close-achievement-gap-column/1996394001/  
  
Picard, M. & Bradley, J. S. (2001). Revisiting speech interference in classrooms. Audiology, 
40(5), 221–244. Retrieved from https://pubmed.ncbi.nlm.nih.gov/11688542/  
  
Romm, J. (2015). Elevated CO2 Levels Directly Affect Human Cognition. Climate Progress, 
Oct, 26. Retrieved from https://thinkprogress.org/exclusive-elevated-co2-levels-directly-
affect-human-cognition-new-harvard-study-shows-2748e7378941/  
  
Zhang, X., Chen, X. & Zhang, X. (2018). The impact of exposure to air pollution on 
cognitive performance. Proceedings of the National Academy of Sciences, 115(37), 9193–
9197. DOI:10.1073/pnas.1809474115 
 
 
 
 
 
 
 
 

38 


