Fluency

Portfolio summary

In F–2, students become fluent as they develop skills in choosing appropriate procedures; and recalling factual knowledge and concepts readily.

In Years 3–6, students become fluent as they develop skills in choosing appropriate procedures; carrying out procedures flexibly and accurately; and recalling factual knowledge and concepts readily. Students are fluent when they calculate answers efficiently, when they recognise robust ways of answering questions, and when they recall definitions and regularly use facts.

In Years 7–8, students develop skills in choosing appropriate procedures; carrying out procedures flexibly, accurately, efficiently and appropriately; and recalling factual knowledge and concepts readily. Students are fluent when they calculate answers efficiently, when they recognise robust ways of answering questions, when they choose appropriate methods and approximations, and when they recall definitions and regularly use facts.

In Years 9–10, students develop skills in choosing appropriate procedures; carrying out procedures flexibly, accurately, efficiently and appropriately; and recalling factual knowledge and concepts readily. Students are fluent when they calculate answers efficiently, when they recognise robust ways of answering questions, when they choose appropriate methods and approximations, when they recall definitions and regularly use facts, and when they can manipulate expressions and equations to find solutions.

Number and algebra: Who are we?

Sample summary

The learning intention of the task was to identify given numbers which occur before and after a given number on a hundreds number chart.

Proficiencies

Understanding

Fluency

Reasoning

At this year level understanding includes connecting names, numerals and quantities, and partitioning numbers in various ways.

Hundreds chart

Number and algebra: Fractions and decimals and percentages

Sample summary

Students were given the following problem to solve:

'A school is enclosed by a fence that has sides of equal length. 60% of the whole fence has been painted black. How many different ways can you draw what the fence might look like? Look at each of your drawings and represent the painted section as a fraction. Represent it as a decimal.'

numbers to 100

Proficiencies

Understanding

Fluency

Problem-Solving

Reasoning

At this year level understanding includes describing properties of different sets of numbers, using fractions and decimals to describe probabilities, representing fractions and decimals in various ways and describing connections between them, and making reasonable estimations.

Worksheet

Annotations

Connects the concepts of percentage, fraction and decimal by accurately representing 60% as a fraction and a decimal and explains why the representations are equal

Chooses the side
length of the square to be 5
metres, with the explanation
that 'it is easy to figure out
60% of 20' following
calculation of the perimeter of
the square (20 metres)

Justifies the choice of a square as an appropriate shape for the area to be fenced

Accurately calculates
60% of the perimeter of the
fence (painted part) to be 12
(metres) and accurately
represents the length of the
painted part on a diagram
representing the fence

Understanding
Recalls that the square
and the regular pentagon are

shapes that have all of their sides of equal length

Reasoning

Justifies the choice of a regular pentagon as an alternative shape for the area to be fenced and correctly identifies the number of sides of the fence (3 of 5) that would be painted

Measurement and geometry: Dimensions of a 3D object

Sample summary

Students were asked to determine the dimensions of a box given the length of ribbon of 1.2 metres needed to wrap around the parcel.

Proficiencies

Understanding

Fluency

Problem-Solving

Reasoning

At this year level understanding includes describing properties of different sets of numbers, using fractions and decimals to describe probabilities, representing fractions and decimals in various ways and describing connections between them, and making reasonable estimations.

Worksheet

Australian Curriculum

Annotations

Understanding
Represents the amount
of ribbon (without bow) to be
used to wrap the parcel as
appropriate multiples of its
length, breadth and height

Calculates efficiently and accurately the amount of ribbon (without bow) required for wrapping the parcel and the amount of ribbon remaining for the bow, and describes the strategies used

Student demonstration

Number and algebra: Game show - Licence to solve

Sample summary

Students participated in a dice rolling game where they rolled two number dice and an operation die to determine the mathematical operation to be performed. The winner was the student with the highest number.

Proficiencies

Understanding

Fluency

Problem-Solving

Reasoning

At this year level understanding includes describing patterns in uses of indices with whole numbers, recognising equivalences between fractions, decimals, percentages and ratios, plotting points on the Cartesian plane, identifying angles formed by a transversal crossing a pair of lines, and connecting the laws and properties of numbers to algebraic terms and expressions.

Worksheet

Annotations

Understanding
In analysing and
interpreting the problem,
connects knowledge of the
order of operations to develop
a strategy for placing the
numbers and operations rolled
on the dice into the given
template

Applies the order of operations appropriately in accurately calculating each of the different answers, and accurately determines the corresponding 'Win' or 'Loss' and the 'Total winnings'

Annotations

Reasoning
Describes the strategy
used and provides a
statement of justification for
the strategy

Number and algebra: Simplifying fractions

Sample summary

Students were asked to solve a problem, where they had to determine the missing numerator in a fraction. They were given a set of clues to calculate the numerator.

Proficiencies

Understanding

Fluency

At this year level understanding includes describing patterns involving indices and recurring decimals, identifying commonalities between operations with algebra and arithmetic, connecting rules for linear relations with their graphs, explaining the purpose of statistical measures and explaining measurements of perimeter and area.

Worksheet

Annotations

Understanding
Uses the reduction of
the fraction to its prime factors
to simplify the fraction

Measurement and geometry: Equal areas

Sample summary

Students were asked to justify the conditions for when a kite and a trapezium would have the same area.

Proficiencies

Understanding

Fluency

Problem-Solving

Reasoning

At this year level understanding includes describing patterns involving indices and recurring decimals, identifying commonalities between operations with algebra and arithmetic, connecting rules for linear relations with their graphs, explaining the purpose of statistical measures and explaining measurements of perimeter and area.

Worksheet

Annotations

Fluency
Recalls the area
formula for a kite and for a
trapezium and expresses the
formulas in relation to the
given diagrams

Reasoning
Investigates the
conditions under which a kite
and a trapezium will have the
same area by comparing the
components of the respective
area formulas

Problem-Solving
Deduces that if a kite
and a trapezium are such that
the length of one diagonal of
the kite is equal to height of
the trapezium then, for the
areas to be equal, the length
of the other diagonal of the
kite must be the same as the
sum of the lengths of the
parallel sides of the trapezium

Understanding
Chooses appropriate
dimensions for a kite and a
trapezium to demonstrate the
truth of the conclusion
reached

Reasoning
Makes a statement that
describes and generalises the
condition for a kite and a
trapezium to have the same
area

Student demonstration

Number and algebra: Archers in the plane

Sample summary

Students were asked to find the coordinates of a point where an archery target could be placed such that it is equidistant from three archers.

Proficiencies

Understanding

Fluency

Problem-Solving

Reasoning

At this year level understanding includes describing the relationship between graphs and equations, simplifying a range of algebraic expressions and explaining the use of relative frequencies to estimate probabilities and of the trigonometric ratios for right-angle triangles.

Worksheet

Annotations

- Calculates the midpoints and gradients of the intervals accurately and the gradients of the respective perpendicular bisectors of the intervals through the use of recalled formulas
- Understanding
 Connects the relevant
 plane geometry and
 coordinate geometry concepts
 by identifying the need to
 determine the respective
 midpoints and gradients of the
 intervals
- Understanding
 Identifies the need to
 determine the respective
 equations of the perpendicular
 bisectors of the intervals to
 determine the coordinates of
 the position in which the target
 should be placed
- Understanding
 Interprets the problem
 as a geometric problem
 involving the intersection of
 the perpendicular bisectors of
 the intervals joining points A
 and B and points A and C
- Problem-Solving
 Determines the
 equations of the perpendicular

bisectors accurately, solves the equations simultaneously to determine their point of intersection, and communicates the solution effectively

Annotations

Understanding
Connects congruency
of triangles, Pythagoras'
Theorem and distance on the
Cartesian plane to establish a
proof that the target has been
located to be equidistant from
all three archers

Reasoning
Describes and justifies
the strategy used to determine
the point equidistant from all
three archers

Student demonstration

Statistics and probability: Baffling box plots

Sample summary

From a given set of information about two footballers, students were asked to determine which footballer was more worthy of a reward. Students had to provide justification for their decision.

Proficiencies

Understanding

Fluency

Problem-Solving

Reasoning

At this year level understanding includes applying the four operations to algebraic fractions, finding unknowns in formulas after substitution, making the connection between equations of relations and their graphs, comparing simple and compound interest in financial contexts and determining probabilities of two- and three-step experiments.

Worksheet

Annotations

Fluency
Represents a larger
interquartile range and smaller
range for Loyd than for
Franklin following appropriate
choice of lower quartiles and
minimum values

Chooses and represents appropriate upper quartile for Loyd and appropriate maximum value ('best season') for Franklin that is higher than maximum value for Loyd

Understanding
Represents upper
quartile for Franklin and
represents median for Loyd
and for Franklin

Reasoning
Explains location of
medians, and upper quartile
for Franklin, and chosen
locations of upper quartile for
Loyd, maximum values, lower
quartiles and minimum values
through annotations on the
boxplots

Annotations

Reasoning
Compares the two
boxplots and justifies the
choice of more consistent
player by referring to the
difference in range

Reasoning
Compares the two
boxplots and justifies the
choice of inductee by referring
to the difference in median
and the difference in
maximum value